Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Tumbling Motion: A Mechanism for Turbulence Enhancement in Spark-Ignition Engines

1990-02-01
900060
The ability of certain induction systems to enhance turbulence levels at the time of ignition, through formation of long-lived tumbling vortices on the plane of the valve and cylinder axes, has been investigated in a two-valve spark-ignition engine by rotating the intake port at 90° and 45° to the orientation of production directed ports. Detailed measurements of the three velocity components, obtained by laser velocimetry, revealed that the 90° port generated a pure tumble motion, with a maximum tumbling vortex ratio of 1.5 at 295°CA, zero swirl, and 42% turbulence enhancement relative to the standard configuration, while the 45° port gave rise to a combined tumble/swirl structure with a maximum tumbling vortex ratio of 0.5 at 285°CA, swirl ratio of 1.0 at TDC, and turbulence enhancement of 24%. The implications of the two types of flow structures for combustion are discussed.
Technical Paper

Transient Characteristics of Multi-Hole Diesel Sprays

1990-02-01
900480
The spatial and temporal characteristics of a diesel spray injected into the atmosphere through a multi-hole nozzle used in small DI Diesel engines have been investigated by laser techniques as a function of pump speed and load. The results showed that spray tip penetration and velocity depend on injection frequency rather than injected volume and the spray is asymmetric during the early and main part of the injection period. In the time/space domain different structures have been identified within the injection period, with the early injection period characterized by a well atomized cloud of droplets, the main period by the spray head and a dense core and the late injection period by the disintegrating dense core and the spray tail. IN DIRECT-INJECTION DIESEL ENGINES for passenger cars, fuel is injected through multi-hole nozzles at high pressure to promote mixing with the rapidly swirling air inside the combustion chamber.
Technical Paper

Transient Characteristics of Single-Hole Diesel Sprays

1989-02-01
890314
Diesel fuel was injected through a pintle nozzle into quiescent ambient air and the transient characteristics of the spray were examined as a function of injection pump speed. The laser-based techniques characterised the spray in terms of its transient structure, tip penetration, droplet axial mean and rms velocities and average droplet size. The results, when correlated with the fuel line pressure and nozzle exit conditions, revealed the presence of four regimes in the transient spray development: an early injection period representing the first stage of droplet formation, the main injection period associated with the formation and break up of a dense core and representing the second stage of droplet formation, a late injection period corresponding to the collapse of the dense core and a post injection period where, depending on the injection conditions, liquid ligaments and/or large droplets are present near the nozzle and may give rise to a third stage of droplet formation.
Technical Paper

Swirl Generation by Helical Ports

1989-02-01
890790
The effect of inlet port design on swirl generation has been investigated for four helical ports from production, prototype and research Dl diesel engines by analyzing experimentally measured steady flow velocity distributions at the inlet valve curtain area and comparing their swirl characteristics in terms of the calculated in-cylinder angular momentum components and swirl ratio under operating conditions.
Technical Paper

Gaseous Simulation of Diesel-Type Sprays in a Motored Engine

1989-02-01
890793
The effect of fuel injection on the flow and the spray/swirl and spray/piston interactions in direct-injection diesel engines have been investigated by simulating diesel sprays with gaseous jet(s) injected through centrally located, single- and multi-hole nozzles into the quiescent and swirling air of a motored engine running at 200rpm and incorporating a flat piston and a re-entrant piston-bowl. The axisymmetric velocity field with and without ‘fuel’ injection was characterised by laser velocimetry near TDC of compression in terms of spatially-resolved ensemble-averaged axial and swirl velocities, the ‘fuel’ concentration field was quantified by laser Rayleigh scattering and the two-dimensional flow was visualised by gated still photography using hollow microballoons as light scatterers.
Technical Paper

Swirl Center Precession in Engine Flows

1987-02-01
870370
The origin and development of swirl center precession in engine flows has been investigated in a steady flow rig, with and without a porous plate simulating a stationary piston, and in a model engine motored at 200rpm; swirl, in all cases, was generated by means of 60° vanes located in the axisymmetric inlet port. The swirl center performs a helical motion that originates as an instability in the forced-vortex core from its interaction with the axial flow at a free stagnation point and develops in the engine from the piston towards the cylinder head; an opposite trend has been observed in the steady flow case with the open-ended cylinder. In the ensemble-averaged measurements, swirl center precession has been identified by the increased tangential velocity fluctuations around the off-centre zero swirl velocity.
Technical Paper

Measurements and Calculations of the Flow in a Research Diesel Engine

1986-10-01
861563
Multidimensional calculations and laser Doppler anemometry measurements are presented of the air flow in a research diesel engine motored at 900 rpm with a compression ratio of ∼8.5. The engine comprised the cylinder head of a Ford 2.5L high speed direct-injection diesel mounted on a single cylinder Fetter engine modified to provide optical access for LDA measurements in a toroidal piston-bowl. The accuracy of the predictions is assessed against ensemble-averaged velocity data and found to be sufficient to allow better understanding of the flow in production engine geometries under realistic operating conditions.
Technical Paper

Three-Dimensional Flow Field in Four-Stroke Model Engines

1984-10-01
841360
Ensemble-averaged and in-cycle axial and swirl velocities have been measured by laser Doppler anemometry in the three-dimensional flow field of a four-stroke model engine motored at 200 rpm with a compression ratio of 6.7 and various cylinder head and piston geometries. The inlet configurations comprised an axisymmetric port with a shrouded valve and an off-centre port with two valve and swirl generating vane geometries. The piston configurations comprised flat, cylindrical and re-entrant axisymmetric piston-bowls. The results indicate that with the off-centre port a complex vortical flow pattern is generated during induction, which later either collapses in the absence of induction swirl or is transformed into a single rotating vortex in the transverse plane when swirl is present. The axisymmetric port with the shrouded valve gives rise to a double vortex structure and higher turbulence levels at TDC of compression compared to the off-centre port.
Technical Paper

The Application on Laser Rayleigh Scattering to a Reciprocating Model Engine

1984-02-01
840376
The Rayleigh light scattering technique has been used to quantify the mean and fluctuating concentration of a passive scalar used to simulate fuel injection in a reciprocating, two-stroke model engine motored at 200 rpm in the absence of compression. The transient concentration field, which results from injection of Freon-12 vapour through the centre of an axisymmetrically located permanently open valve, has been investigated for injection timings of 40 deg. before and at top-dead-centre as a function of spatial position and crank angle. The purpose-built Rayleigh system, with gated digital data acquisition and software dust particle filtering, was first evaluated in a Freon-12 free jet by comparing results to those obtained with a sampling probe.
Technical Paper

Effect of Inlet Parameters on the Flow Characteristics in a Four-Stroke Model Engine

1982-02-01
820750
The flow structure in a four-stroke model engine motored at 200 rpm with a compression ratio of 3.5 has been investigated. Ensemble-averaged axial and swirl mean and rms velocities have been obtained by laser-Doppler anemometry downstream of an axisymmetrically located single valve with 30 and 60 degree seat angles and various lifts, with and without induction swirl. In all cases, the intake-generated flow structure in the axial plane disappears by the time the inlet valve closes and results in nearly homogeneous turbulence during compression with levels of 0.5–0.7 times the mean piston speed. The swirling flow, however, which is induced by means of vanes, persists through the compression stroke, evolving from a spiralling motion early during intake into solid body type of rotation near TDC of compression, with associated swirl ratios increasing with valve lift.
X